Integrated probability function and its application to content-based image retrieval by relevance feedback
نویسندگان
چکیده
In the last few years, we have seen an upsurge of interest in content-based image retrieval (CBIR)—the selection of images from a collection via features extracted from images themselves. Often, a single image attribute may not have enough discriminative information for successful retrieval. On the other hand when multiple features are used, it is hard to determine the suitable weighing factors for various features for optimal retrieval. In this paper, we present a relevance feedback framework with Integrated Probability Function (IPF) which combines multiple features for optimal retrieval. The IPF is based on a new posterior probability estimator and a novel weight updating approach. We perform experiments on 1400 monochromatic trademark images have been performed. The proposed IPF is shown to be more e6ective and e7cient to retrieve deformed trademark images than the commonly used integrated dissimilarity function. The new posterior probability estimator is shown to be generally better than the existing one. The proposed novel weight updating approach by relevance feedback is shown to be better than both the existing scoring approach and the existing ratio approach. In experiments, 95% of the targets are ranked at the top ;ve positions. By two iterations of relevance feedback, retrieval performance can be improved from 75% to over 95%. The IPF and its relevance feedback framework proposed in this paper can be e6ectively and e7ciently used in content-based image retrieval. ? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملContent-Based Image Retrieval by Relevance Feedback
Relevance feedback is a powerful technique for content-based image retrieval. Many parameter estimation approaches have been proposed for relevance feedback. However, most of them have only utilized information of the relevant retrieved images, and have given up, or have not made great use of information of the irrelevant retrieved images. This paper presents a novel approach to update the inte...
متن کاملAlgorithms of High-Level Semantic-Based Image Retrieval
IPSM is an integrated probabilistic image semantic description multi-level model. This model includes input layer, feature layer, semantic layer, synthetical probability layer, probability propagation layer, and semantic mapping layer. Based on the model and characterizing of the image high-level semantic content according to Bayesian theory, SHM (semantic high-level retrieval algorithm) and SR...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 36 شماره
صفحات -
تاریخ انتشار 2003